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Abstract

Genetic algorithm behavior is described in terms of the construction and evolution

of the sampling distributions over tile space of candidate solutions. This novel per-

spective is motivated by analysis indicating that the schema theory is inadequate for

completely and properly explaining genetic algorithm behavior. Based on the proposed

theory, it is argued that the similarities of candidate solutions should be exploited di-

rectly, rather than encoding candidate solutions and then exploiting their similarities.

Proportional selection is ch_terized as a global search operator, and recombination

is characterized as the search process that exploits similaritie.s. Sequential algorithms

and many deletion methods are also analyzed. It is shown that by properly constrain-

ing the search breadth of r_ombination operators, convergence of genetic algorithms

to a global optimum can be ensured.

1 Introduction

Genetic algorithms are _tal)tive systems designe(! to emulate natural evolution. They were

first proposed by John Hollan(1 in 1975 in his seminal work Adaptation in Natural and

Artificial Systems (Holland, 1975). De ,long suggests that genetic algorithms should be

understood from the perspectives of genotypic and phenotypic behavior, as well as their

performance as global optimizers (De Jong, 1993). This paper contributes to this goal by

describing genetic algorithm behavior in terms of the sampling distributions they impose on

the genospaee and the phenospaee, and how these distributions contribute to or detract from

the optimization process.

"This work was supported by a contnu:t from the NASA Space Engineering Center for System Health
Management Te(_nology at the University of Cincinnati.



While genetic algorithms have t)een shown to be effective in many problem domains, the

theoretical foundation for describing, explaining, and pre(ticting their behavior is presently

inadequate. As argued in Section 2, the prevailing theory of genetic algorithm behavior, the

schema theory, is not a suital)le theory for describing genetic algorithm behavior. Accord-

ingly, the primary objective of this paper is to generalize genetic algorithms and to provide

an adequate basis for their undemtanding and analysis (Sections 3 & 4). A second objective

of this paper is to explore the issuers and variations of genetic algorithms permitted by their

generalization in the context of the proposed exI)lanation of genetic algorithm behavior (Sec-

tion 5). The final objective of this paper is to ([etermine the conditions under which genetic

algorithms can be assured to converge to a global optimum (Section 6). Finally, conclusions

and suggestions for filtm'e research are presented (Section 7).

2 Descriptions and Analyses of Genetic Algorithm Be-

havior

In this section, descriptions and analyses of genetic algorithm behavior are considered. Natu-

rally, the most basic description of a genetic algorithm and the flmdamental basis of analysis

is its definition. For the purI)oses of this paper, the canonical genetic algorithm is defined by

Procedure 1. In step 3 and throughout the paper, the recombination of parental encodings is

taken to include the effects of both mutation and crossover. Common recombination opera-

tors and fitness scaling techniques are (le_scril)e(t throughout tile literature (general coverage

is provided in (Holland, 1975; Goi(Iberg, 1989a; Davis, 1991)). In sub.c, ection 2.1, where the

schema theory is considered, it is a.c,sumed that no fitness scaling is used an(t that the entire

population of chromosomes is replaced e_w.h generation.

Procedure 1 Tile Canonical Genetic Algorithm

1. Initialize a polmlation of chromosomes (l)inary strings).



2. Evaluate eachchromosonmin tile population by applying the objective flmction to its

corresponding candidate solution.

3. Create new chromosomes by applying a fitness scaling technique to ttle chromosome

evaluations, choosing parent chromosomes according to their relative fitness, and re-

combining their encodings.

4. Delete meml)ers of the popul_tion to make room for the new chromosomes.

5. Evaluate each new chromosome as in Step 2, and insert it into the population.

6. If the stopping criterion has been satisfied, then stop and return tile chromosome with

the best obsel_e(l fitness; otherwise continue with Step 3.

While the procedural description is coml)lete and exact, it is not adequate for conveying

a suitable understanding of genetic algol'ithm behavior. This description is able to explain

phenomena arising from the use of a genetic algorithm only at the lowest level of abstrac-

tion and understan(ling. Since this de_criI)tion operates at the experimental, practical, or

phenomenal level, it does not constitute a theory. Consequently, the inadequacies of this

description have given rise to the schema theory and other analyses of genetic algorithms,

such as Markov chain analysis.

In the remainder of this section, tile suitability of existing analyses of genetic algorithm

behavior are considere(l on the basis of the following criteria:

1. The theory should he well grounded in tile procedural elements and the generating

mechanisms of genetic algorithms. These inclu(le the l)rocesse_s of selection, recombi-

nation, fitness evaluation, and population management.

2. The theory should have explanatm.5' and pre(lictive power.

3. Tile theory should I)e rol)ust with respect to algorithmic variations.



Furthermore, in considerationof Occam's razor, tile preferred theory is the simplest and

most closelygroundedto that which is known (i.e., tile proceduralelementsand generating

mechanisms).

In this paper, an individual string is denoted A or Aj, where j = 1, 2,..., N, and N

is the size of the population A(t) at time t. The objective or fitness fimction is denoted

f : ,4 _ 31 > 0. A schema, its order, and its defining length, are denoted H, o(H), and

5(H), respectively. A schema's order is the number of fixed positions or string elements

common to all members of the schema, and its defining length is the distance between the

schema's first and last fixed positions.

2.1 The Schema Theory

According to the schema theol% genetic algorithms work in tile space of schemata as opposed

to the space of strings. Therefore, it is necessary to understand tile effects of reproduction

and the recombination ol)erators on the schemata containe(t within a population in order

to understand tile behavior of genetic algorithms within the context of tile schema theory.

When proportional selection is use(i, the probability of selecting Aj,t, the jth individual in

the population at time t, as a parent is

f(&,') (1)
Pi't= _ f(Ai,t)'

A_,tEA(t)

and, tile target sampling rate of a schema H is

f(H,t) r 5(H)

g{m(H,t + 1)} > m(H,t) [ o(H)p,_ ,- Y(X-(?;)1-P e- 1 (2)

where re(H, t) is tile number of representatives of H in the population at time t (Grefen-

stette & Baker, 1989), .f(H, t) is tile average fitness of tile representatives of H in the present

population, f(A(t)) is the average fitness of the present population, pc is the crossover prob-

ability, and Pm is the mutation probal)ility. Based on (2), it has been concluded that small,

low-order schemata with abov_average performance are allocated ext)onentially increasing
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trials in subsequentgenerations(Gol(tl)erg,1989a).An important observation in the schema

theory is that each l)inary string implicitly searches or samples 2t schemata. According to

the theory, this implicitly acquired information is then used for trial allocation to schemata

and to generate increasingly better strings. It has been argued that implicit parallelism

leverages the power of genetic algorithms (Golttl)erg, 1989a), and allows them to avoid the

obstacles of high dimensionality (Holland, 1975). Equation (2) is often referred to as the

Schema Theorem or the Fundamental Theorem of Genetic Algorithms (Goldberg, 1989a).

Tile schema theory will now be evaluated accor(ling to the suitability criteria established

at the beginning of this section.

1. The allocation of trials to schemata in a manner consistent with tile schema theorem

is certainly well grounded to the procedural elements. However, schema information

is not used in tile procedure for trial allocation or any other purpose. Therefore, the

use of acquired schema information to guide or affect genetic algorithm behavior has

no tangible ba.sis and is not well grounded (Peck, 1993, §3.2.5).

2. Ttle schema theory has lead to usefifl, verifiable predictions (e.g., see (Fitzpatrick &

Grefenstette, 1988; Goldl)erg, Deb & Clark, 1992; Goldberg, Deb & Clark, 1993)).

However, the schema theory is inexact due to tile inequality in (2). Furthermore, the

schema theory an(l ttle building block hyl)othesis are unable to explain how genetic

algorithIns systematically generate improve(I candidate solutions, since they depend

on the use of implicitly acquired schema information (Peck, 1993, §3.2.5).

3. Tile schema theory, _.s presented in this paper, is not robust with respect to algorithmic

variations (Peck, 1993, §3.2.5). Genetic algol'ithm variants using fitness scaling, rank-

ing, an(t/or real (floating point) enco(iings are difficult, if not impossit)le, to explain

within the context of tile st_.hem;t theory. Tile attempts that have been made require a

new interpretation of the schema theory or higher-order ai)stractions (Whitley, 1989;

Goldberg, 1991a; Gol(ll)erg, 19911)). Similar algorithms, such a.s evolution strategies
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and evolutionary programming (Bii, ck & Schwefel, 1993), are beyon(l the scope of tile

schema theory.

It has also been observed that sctmma-I)ased analysis of genetic algorithm behavior is greatly

complicated by the difficulties in associating properties to schemata (Forrest & Mitchell,

1993; Grefenstette & Baker, 1989; Grefenstette, 1991; Grefenstette, 1993; Peck, 1993; Peck &

Dhawan, 1993). Finally, since genetic algorithms (1o not use schema information, there is no

basis to conclude that genetic algorithms realize advantages from implicit parallelism (Peck,

1993).

2.2 Alternative Analyses of Genetic Algorithms

While the primary basis of genetic algorithm analysis has been the schema theory, other

types of analysis have been pursued a._ well. Tile primary bases of alternative analysis |lave

been Markov chain and simulated annealing theory. Most of tile analyses in the literature

have only sought to address specific issues, have made simplifying assumptions, or have not

been dependent on the distinguishing characteristics of genetic algorithms (De Jong, 1975;

Goldberg & Segrest, 1987; P_d)inovich & Wigderson, 1991; Eiben, Aarts & Hee, 1991; Davis

& Principe, 1991).

The theory presented in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) rep-

resents tile most accurate an(t comI)lete alternative theory of genetic algorithm behavior

in tile literature. In (Vose & Liel)ins, 1991a), Vose and Liel)ins present a novel, algebraic

formalization an(t analysis of a simI)le genetic algorithm. Using Markov chain analysis, with

tile state defined l)y the composition of an infinite sized population, tile trajectory of the

expected populations is mo(lele(t, an(l the conditions for convergence to the absorbing states

of the transition maI)I)ing are derive(l. In (Nix & Vose, 1992), the formalism of tile Vose and

Liepins model is applie(! to a siml)le genetic algorithm with a finite polmlation size. It is

conchlded that, ,as tile l)opulation size increases, the asymptotic l)ehavior of tile steady state

distributions may be characterize(l in terms of the Vose and Liepins mo(lel. In (Vose, 1993a),



the two preceding works are fitrther tied together, and tile GA-surface is introduced. The

GA-surface, which is composed of tile points corresponding to populations, may be used to

provide a geometric interpretation of genetic search and to explain population trajectories.

The theory contained in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) will

now be interpreted in tile context of the criteria estai)lishe(t at the beginning of this section:

1. The construction and operation of the population transition operators is well grounded

in the procedural elements an(! generating mechanisnls of genetic algorithms. In fact,

the representations in (Nix & Vose, 1992) and (Vose & Liepins, 1991a) are exact for

finite and infinite populations, respectively.

2. Since tile rei)resentations are exact, any phenomena observed of genetic algorithms

will be explainable within their contexts. As an example, observations of punctuated

equilibrium are exI)lainal)ie in the context of the infinite population representation.

Furthermore, rnany predictions regarding short and long term behavior have been

derived from this analysis.

3. Markov chain representations may l)e generated for nearly any algorithmic variant.

Derived properties must naturally be l)roved for each variant.

The above analysis suggests that a suitable theory for genetic algorithm analysis has

been constructed. There is, however, a sul)tle caveat to this conclusion: the explanatory

power of this work is hanq)ere(l 1)y lumping genetic algorithm behavior into a population

transition operator. There are many low-level i)henomena of genetic algorithms that are not

adequately understoo<l, and a high-level, mfitary al)str_tion such ms a population transition

operator may have difficulty explaining them. A level of ai)straction ol)erating between

the low-level abstraction of tile procedure and the high-level al)straction of the transition

operator is desired.



3 Global Random Search Methods: An Overview

This section reviews the theot3, of global random search methods. This theory serves as the

basis for an alternative theory of genetic algorithm behavior, which is presented in Section 4.

The presentation throughout this section primarily summarizes and clarifies tile analysis and

results pre_ente(t by Zhigljavsky (Zhigljavsky, 1991). A more thorough summary of these

results is presented in (Peck, 1993).

This section begins with an introduction to global search methods. This is followed by

a presentation of basic global random search metho(Is. Finally, generational methods and

their convergence properties are examine(t.

3.1 Introduction and Notation

In the typical global ol)timization l)roblem, it is desired to optimize an objective function,

which may be a mathematical expression or the OUtlmt of an algorithm, process, experiment,

or system. Let X denote a set referredto as the feasil)leregion and f : X --4_i be the

objective function, In the glol)alminimization prol)lem,it is(le_sire(lto approximate either

tilevalue

f*= inf f(x) (3)
xEX

the point x* E X at whi(:h the minimal value f* is _lttaine(t,

x* = arg rain f(x), (4)
xEX

"* is not generally unique.or both. The global minimizer, .z; ,

Approximating f* an(l a point :r* = arg rain f is usually interprete(l as finding a point in

either the set

A(,{) = {_: e X ' lf(z) - f(z*)l < 5}, (5)

or the set

B(e) = B(:,:',e,p) = {_:e x . p(_:,:,:') < e}, (6)



where p is tile given metric on X, 5, and e determine tl,e accuracy of tile approximation with

respect to tile function and argument values (Zhigljavsky, 1991, pg. 2).

In the global m_ucimization problem, alternatively, tile objective is to approximate either

tile value

M = s.p (7)
xEX

the global maximizer, which will also be denoted .7:*, where

x* = arg max f(z), (8)
xE,¥

or both. The meaning of z* will be understood through context. It should also be noted that

by substituting -f for f, the maximization problem may be converted into a minimization

problem, and vice versa. To avoid redun(tanc.y, only the minimization problem will be

addressed for the remain(ter of this an(l the next subsection.

Generally, a global minimization method is a procedure for constructing a sequence {xk }

of points in X that converges to a point at which the global minimizer, f*, is attained

or approximated (Zhigljavsky, 1991, pg. 1). The nature of convergence depends on the

optimization method. For example, convergel,ce may i)e of the values of f(xa) to f* or of

the sequence {xk} to a probal)ility measure concentrated at x*. This procedure may use a

priori information about X or f, such ;uq values of f, it derivatives, or the presence and

nature of random noise.

The complexity of tile optimization problem is dependent on the properties of X and f.

Furthermore, there exists a duality between the corresl)on(iing properties (Zhigljavsky, 1991,

pg. 2). Specifically, if X is coml)lex but f is simple, then the oI)timization problem may be

reformulated such that X is simple an(! f is complex, and vice versa.

As stated above, the nature of X effects the complexity of the optimization problem and

should be considered in the selection of the optimization technique. In general, unlike local

optimization, global optimization cannot lie (lone if X is not l)oun(ted. Some techniques

require that X possess certain l)ropet'ties (e.y., that X 1)e close(l, compact, connected, etc.).



Other important considerationsincludethe choice of a metric or, X, techniques for reducing

the complexities associate(! with problem constraints, an(! the dimension n of A" when X C

_'_ (Zhigljavsky, 1991, pg. 3)

The optimization method is typically selected, in part, based on the flmctional class, _',

of f, which is determined by prior knowledge of f. Tile chosen fimctional class corresponds

to a model of f. The wider the fimctional claus _- is, the wider the class of allowable problems

is, and the less efficient the algorithms are (Zhigljavsky, 1991, pg. 3).

3.2 Basic Global Random Search Methods

Global random search methods may l)e classified as passive or adaptive. Passive methods,

such a.s uniform random saml)ling (pure random search), proceed without exploiting infor-

mation learned about f on X. Conse(luently , these methods are typically quite simple, but

they are also quite inefficient. A(laptive methods, conversely, use acquired and a priori infor-

mation to improve their efficiency. For a brief survey of _utaptive methods, see (Zhigljavsky,

1991, pg. 82).

3.2.1 Formalization of Global Random Search Methods

The following I)rocedure represents a generalization and formalization of global random

search metho(ts. It is inten(led to serve as the basis of comparison and discussion of the

various methods considered in this paper.

Procedure 2 Formal Scheme of Glohal P_m(lom Search (Zhigljavsky, 1991, Algorithm 3.1.5,

pg. 85)

1. Set k - 1, choose a I)roi)ability distribution/>1 on X.

2. Sample Nk times the (tistrilmtion Pk to obtain the points

x_ k) T(k)
) " " " _''Nk"

At each of these l)oints, evaluate f, possibly with ran(tom noise.
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3. Using a fixed, algorithm-dependentrule, constrllct the probability (tistribution Pk+l

oil X.

4. If the stoI)l)ing criterion is satisfied, then stop; otherwise, set k = k + 1 and continue

with Step 2.

This procedure illustrates that any gh)bal random search method is iterative. Furthermore,

at each iteration a suitably constructed distribution is sampled (Zhigljavsky, 1991, pg. 85).

In Markovian methods, Nk = 1 for all k.

The distributions {Pk+1} determine how a priori information and the information ac-

quired during tile search process is derived and exploited by the search algorithm. Without

loss of generality, tile (tistril)utions may I)e written in the form

Pk+l(d:,:) = f,c Rk(dz)Qk(z, d:,:), (9)

where Rk is a probability distribution on X and Qk(z, .) is a Markovian transition prob-

ability (Zhigljavsky, 1991, pg. 85). The transition probability, Qk(z,.), is a measurable,

nonnegative flmction with respect to the first argument and a probability measure with re-

spect to the second. Sampling this distribution is performed by sampling Rk (dz) to obtain z,

then sampling Qk(z, dx) to obtain x, the desired sample. As shown below, R_ and Qk(z, .),

serve two distinct roles in the search strategy.

The distrib_tion Ilk comprises the gh)ba] aspects of the search strategy. Accordingly,

Rk is constructed using globally derived infi)rmation about f, and a point from all of X is

chosen when sami)ling Rk. The metho(I for constructing R_ largely determines the general

structure of the algorithm, an(l it is the typical 1)_sis for algorithm classification. Common

classes of algorithms in(:h|(ie Markovian, generational, and branch and bound.

The (tistril)ution Qk(z, .) comprises the local _.sl)ects of the search strategy. When sam-

pling Qk(z, .), a point in the neighborhood of z is selected. The term neighborhood should be

interpreted to mean "with large l)rol)ability near enough (Zhigljavsky, 1991, pg. 86)." The
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nature of Qk(z, .) largely determines the tradeoff between the accuracy of the final result

and tile efficiency of the search. A simple choice of Qk(z, .) is

_k(.7:- z)dx
Qk(z, dz) =

/x _k (_ - :)dU

(10)

where qok is a chosen distribution density in N". The denominator of (10) is a normalization

constant. A random realization .7:_ in X from tile distribution in (10) may be obtained by

repeatedly sampling qok to obtain a realization _k until z + _k E X, then setting xk = z + _k-

The distribution described above is the method of choice when random noise is present in

tim evaluations of f (Zhigijavsky, 1991, pg. 86). It is also usefifl as a component of other

distributions.

When f is evaluated without noise, the tbllowing distributions for Qk(z,.) are often

preferred:

£ 1A(Z)£ (11)Qk(z,A)

where Tk(z, dx) is a Markovian transition [)rol)ability of the form expressed in (10) and la

is the indicator of set A:

1 ifzEA (12)1A(x)=li_A]= 0 ifx_A.

The first integral represents tile proi)ability of sampling a point z E A for which f(z) <_ f(z).

The second integral, which only eontrilmtes to the sum if z E A, is the probability of sampling

a point z E X for which f(z) > f(z). A realization z_ fi'om (11) may be obtained by sampling

the distribution Tk(z, .) to get _, and setting

{ _k iff(_t,) < f(z):1-k --_
z otherwise.

Other methods for constructing Q_(z,.) exist. In fact, it is not necessary to know the

analytical form of Qk(z,.), it is only necessmT that a metho(t for sampling, such as an

algorithm, exists (Zhigljavsky, 1991, pg. 87). Fm'thermore, Qk(z, .) may be constructed

using a priori information or information acquire(! (lm'ing the search.
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3.2.2 General Convergence Results

In this section, Zhigljavsky's general results oil tile convergence of global random search

methods will be presented without I)roof. For the l)roofs, tile interested reader should refer

to (Zhigljavsky, 1991, fi3.2). Without loss of generality, it will be assumed that Nk = 1 for

all k -- 1, 2,... such that a separate distribution Pk is constructed for each sampled point,

Xk -- X_ k)

Theorem 1 Let f be continuous in tile _ricinity of a global minimizer x* of f, and assume

that
OO

qk = oo (13)
k=l

for any x E X and e > 0 where

qj, = qk(x °, e) = w'ai inf Pk(B(s) ), _-k-i-- {T'l,''',:gk-l}_

and vrai inf rl is the essential infimum of a random variable rI."

vrai infT/= sup{a: Pr{r/_> a} = 1}.

Then for any 5 > O the sequence of random vectors ._:k generated by Procedure 2 with Nk = 1

for k = 1, 2,... falls infinitely often into tile .set A(5) unth probability one.

Theorem 1 makes use of tile probal)ilities, for each iteration, of falling into an arbitrarily

small set around a glol)al optimizer. It shows that if the sum of these probabilities is

unbounded, then infinitely many evaluations of f will l)e arbitrarily close to the global

optimum. This theorem aI)plies even when f is evaluated with ran(lore noise. Since the

location of any global optimizer is tyl)ically not known a priori, it is sufficient instead to

require that Theorem 1 apl)ly to every x E X, in a(l(lition to sets around global optimizers.

This stricter, yet simI)ler, requirement may l)e expressed:

OO

y_. vrai inf Pk(B(:':, e)) = oo, (14)
k=l --k-I

13



for alle>0, xEX.

There are many ways of selecting prol)al)ility distributions Pk such that (14) is satisfied.

A common approach is to select the probal)ility distributions Pa according to

Pk = c*kP,r + (1 - c ,)Gk, (15)

where 0 < c_ < 1, P,r is the uniforul distriimtion on X, and Gk is an arbitrary distribution

on X. A realization, x_:, from (15) may be ol)tained 1)y sampling Px with probability c_k and

Gk with probability 1 - (_k. To satisfy (14), it is sufficient to re_luire

oo

Z Ot k -" 00.

k=l

3.3 Methods of Generations

Generational methods, also calle(l methods of generations in the literature, sequentially sam-

ple probability distributions that are asymptotically concentrated in the vicinity of a global

optimizer multiple times. Each of these multiple samplings is referred to ,as a generation.

These methods, which were first l)rOl)OSed in the late 1960's, are base(t upon the three fol-

lowing heuristics (Ztligljavsky, 1991, pg. 186):

i. New samples of f shouht most often be obtaine(t in the vicinity of previous,

high-performance saml)les,

ii. The mm|l)er of new samples in the vicinity of a previous samI)le must depend on

the observed value of f _t that sample,

iii. The brea(lth of the sampling distribution around the previous samplings should

decrease as the glol)al oI)timizer is aI)I)ro_lx:he(l.

Generational metho(ts have many desirable l)rol)erties. In exchange for their inefficiency

at solving easy global optimization l)rol)lems, they are suital)le for a wide range of prob-

lem domains. In particular, they may be al)i)iie(I to very coml)lex problems and they are

14



applicable when noise is present. Finally, as shown in Subsection 3.3.2, they have provable

convergence properties.

In this section, it will l)e assumed that tile fem_il)le region, X is a compact metric space of

an arbitrary type. Furthermore, it will be assumed that tile maximization problem is being

considered.

3.3.1 Presentation of Generational Methods

The following procedure satisfies tile three heuristics. It is based on tile supposition that

the result of evaluating f at a sample point x E X an(l iteration k is a nonnegative random

variable yk(_:) = f(z) + _:(:l:), where _k(._:) is also a random variable. /3 is the a-algebra of

the Borel subsets of X.

Procedure 3 Generalize(t Method of Generations Algorithm with Randomization

1. Choose a distribution P1 on (X,/3) and set k = 1.

2. Sample Nk times tile distribution Pk to ol)tain the points x_ 1) _.(1), • . . 7 ._,Nk-

wu'ial,les '!1,:(._:_k)) at tile points ._:_k), where yk(x) = fk(x)+_(X) >_3. Evaluate tile raIl(|()lIl

0 with probal)ility one, and fk is an auxiliary nonnegative fimction constructed using

the observe(t values of f at tile l)oints _(i) for j = 1, Ni, i = 1 k. If
_l,j • •., ,. "'_

Nk

j=l

then repeat the sampling by returning to Step 2.

4. Construct tile next distril)t|tion according to

N" k

j=l

where

P_:) -- N_

i=l

(17)
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5. If the stopping criterion is satisfied,thenstol); otherwise,substitute k + 1 for k and go

to Step 2.

tion

Tile distril)ution Pk+l in (16) is saml)le(l using SUl)erposition: first the discrete distribu-

= ...,,,N, (18)

, liNk

is sampled, then tile distribution Qk(:z:_k),.) is saml)led for e_w.h realization x_ k) (Zhigljavsky,

1991, pg. 188). It will l)e assumed in the theoretical analysis of Procedure 3 that (16) will

be sampled in this manner. In practice, however, variance reduction techniques are typically

applied to the sampling procedure (Zhigljavsky, 1991, pp. 188-189). These technique_ ensure

that some of the best points are sampled with prol)al)ility one.

In Procedure 3, auxiliary, nonnegative fimctions, fk, are use(t to construct Pk+l. These

fimctions shoul(l reflect the properties of f. For example, f_ should, on the average, be

greater where f is great an(l smaller where f is small. The choice of fk can greatly affect

the quality of the resulting algorithm. Zhigljavsky suggests that the construction of these

fimctions should done with a technique for extracting and using information about the

objective fimction during the search or t)e 1)ase(l upon some technique of objective flmction

estimation (Zhigljavsky, 1991, pg. 189).

Procedure 3 may l)e terminate(t when a prescribed numl)er of iterations have been ex-

ecuted or according to some other criterion. Zhigljavsky suggests termination when the

desired accuracy has I)een obtained. This may 1)e (ietermine(t using the metho(ls for esti-

mating M described in (Zhigljavsky, 1991, Ch. 4).

There are also sequential variants of Procedure 3 (Zhigljavsky, 1991, §5.4). The distin-

guishing characteristics of these algorithms are that the sampling (tistrilmtions Pk+t (dx) may

be constructed using points fl'om all previous iterations, an(I, except for the first iteration,

only one sample is obtained per iteration.
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3.3.2 Convergence Properties

In this subsection, tile convergence properties of the global random search methods described

by Procedure 3 will be considered. To prove that the sampling distributions of methods of

generations weakly converge to the proi)ability measure concentrated at a global optimum,

Zhigljavsky places key requirements upon the local sampling components, Qk, and the global

sampling components, Rk. Of these requirements, two are placed on the local sampling

components:

1. The breadth of the distributions Qk must be reduced as the algorithm proceeds such

that the sequence weakly converges to a prol)ability measure concentrated at the point

where it is locateil.

2. The distributions Qk must somehow be constrained so that their expansive nature

cannot overcome tile convergence caused by the global sampling components, Rk. A

for2iori, these distributions must t)e (tesigned to prevent diffusion away from global

optima in the absence of selective convergence; otheI_vise, a(hlitional assumptions about

the obj_tive flmction, f, would I)e require(t.

Without the first requirement it would not 1)e possii)le to prove convergence of the sampling

distributions to a t)rol)at)ility measure concentrated _t a global optimum or any other point.

Zhigljavsky satisfies the secon(i requirement in two ways. In Corollary 3 below, a form of

local elitism is used to l)revent (iisl)ersion of the sampling (tistrilmtion away from global

optima. In Corollary 4 below, the search 1)rea(lth of the (tistritmtions Qk is required to

be finite, and the bre_ith of these distributions are required to (tecrease rapidly enough so

that the search range l)ecomes l)oun(led. Finally, the distributions Rk are required to be in

the form of proportional selection, (17) or (1). Heuristically, tile samI)ling distributions of

metho(is of generations converge to the gloi)al sampling distributions

ft'(x)l,(dx)

J" fk(z)jt(dz)
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due to tile requirementsl)l;w.e(lon tile local saml)ling distributions Qk. Furthermore, as

shown in Lemma 2, these distributions converge to global optima.

Auxiliary Statements Below, two auxiliary lemmas of considerable importance and two

associated corollaries are t)re.sente(l. Al)pen(lix B presents the assumptions upon which these

results are based. The proofs for these results are presented in (Zhigljavsky, 1991, §5.2.2).

Lemma 1 If the assumption._ (a), (b), (c), (e), (f), (g), and (s) are satisfied, then

1. the random variables urith the distT_bution PM(dXl,..., dxM ) are symmetrically depen-

dent;

2. the marginal distributions PM(dx) -- PM(dX, X,..., X) are representable as

F'M(dx) f FlN(dz)f(z)Q(z, dx)= + AN(dx), (19)

f ffdzv(dz)f(z)

where RN(dz)= RN(dz, X,...,X); and

o the signed me_sur'es AN converge to zeTv m variation for N --+ cx_ with the rate

N-_/_-, i.e.,vat(AN) = 0(N-l/'2), N _ oo.

By substituting A, Nk, Nk+l, P(k, Nk-_; .), P(k + 1, Nk; .), P(k + 1, N_,; dx) = P(k +

1,Nk;dx,.¥,...,X), and -_(k, Nk,.) for f, N, M, Rtv(.), PM(.), PM(dX), and AN(.), respec-

tively, an(t al)plying Lemma 1, Zhigljavsky obtains the following assertion.

Corollary I Let (a), (b), (c), and (c) be met. Then for any k = 1, 2,... and Nk = 1, 2,...

the following equality hobt_ for the unconditional distribution of random elements x_ k)"

f P(k.,Nk_t;dz)fk(z)R(k,,Nk, z;dx)
P(k + 1,Nk;dx) = " (20)

f P(k, Nk_ ;dz)A(z)

where

R(A=, =;d:,:)= Qk(z, d:,')+ a(t:, gk; dz),

18



and the signed measures A(k, Nk; .) conve_ye in variation to zero for N --+ c_z unth the rate

of order N[ 1/2 for any k = 1, 2, ....

This leads to the next corollary.

Corollary 2 Let (a), (b}, (c), and (e) be satisfied. Then for any k = 1, 2,... the sequence

of distributions P(k + 1, Nk; .) cowoerges in variation for" N_ --+ cx_ to the limit distributions

Pk(.) and

= (21)
f P (dz)h(z)

Loosely speaking, Lemma 1 and Corollaries 1 and 2 above concern the distributions

constructed by generational methods. The following lemma concerns the distributions con-

structed by (17) alone. Appendix A provides a definition and three alternative characteri-

zations of weak convergence.

Lemma 2 Let (c), (d), (h), (i), and (j) be .satisfied. Then the sequence of distributions

fm(:':)lz(dx) (22)

= f fm(z)#(dz)
J

weakly converges to ¢*(dx) = ¢..(dx) for m _ cxz.

Convergence Properties The sufficient con(titions for the weak convergence of the dis-

tribution sequences (20) and (21) to e*(dx) for k -_ c_z will now be presented. The proofs

for these results are presented in (Zhigljavsky, 1991, 5.2.3).

Theorem 2 Let the conditions (c), (d), (e), (h), (i), and (j) be; satisfied as well as (k) and

(m) or (l) and (n). Then the; di.stribution .sequence dete,vnined through (21) or, respectively,

through (20) weakly converges to e" (dx) for k --+ cxz.

With the exception of conditions (m) an(t (n), all of the required conditions for Theorem 2

are natural and reasonal)ie. As mentioned previously, it is of great intere.st to determine
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tile sufficient conditions for tile satisfaction of (m) and (n). In (Zhigljavsky, 1991, §5.2.3),

Zhigljavsky formulates the sufficient conditions for distribution convergence to e* (dr,) for the

two theoretically most important ways of choosing the transition probabilities Qk(z, dx), as

follows.

Corollary 3 Let the conditions (c), (d), (e), (h), (i), (j), (o), (p), (q), and (t) be satisfied.

Furthermore, let (k) be satisfied for" the transition probabilities Tk(x, dz) of (59). Then the

sequence of distributions deter'mined by (21) weakly converges to e*(dx) for k --+ c_.

Corollary 4 Let the conditions (e), (h), (i), (j), (q), (r), and (t) be satisfied. Then the

sequence of distributions detervnined b:q (21) weakly converges to e*(dx) for k -+ c_.

Zhigljavsky asserts that, like Theorem 2, Corollaries 3 and 4 may be reformulated to

demonstrate the convergence of (20) to c*(dx). Corollary 4, tile more non-trivial of the two,

was then reformulated and proved.

Corollary 5 Let the cortditions forvmtlated in CorollaT"ies I and _ be satisfied. Then there

exists a sequence of 'natural numbers Nk (Nk --+ cxz for" k --+ co) such that the sequence of

distributions P(k + 1, Nk; dx) determined by (20) weakly converyes to e*(dx) for k --_ cxz.

4 Genetic Algorithms as Global Random Search Meth-

ods

Genetic algorithms are global random search methods. Accordingly, it is argued that genetic

algorithm behavior is best described by the construction and evolution of the sampling distri-

butions. Furthermore, it is preferred that these sampling distributions be described relative

to the phenosI)ace, rather than tile gem)space. However, genotypic sampling distributions

are equally usefid when the (tistrilmtion of candidate solutions across the genosp_me is un-

derstood or known. Matching the siml)licity of the genetic algorithm itself, this perspective

azl(t the theory associate(I with it is remavkahly simple. Furthermore, it will be shown that
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this is a suitable theory for geneticalgorithm behavior_cording to tile criteria established

in Section2.

The genotypic sampling distributions of genetic algorithms have been described previ-

ously in the literature. The sampling distributions arising from proportional selection and

mutation are presented in (Davis & Principe, 1991). Those resulting from proportional se-

lection and on,e-point crossover are described in (Bridges & Gol(tberg, 1987; Whitley, 1993).

Statistical memsures derived from recombination Ol)erators and their relationship to the ob-

jective fimction are presente(! in (Manderick, (le Wager & Spiessens, 1991). The sampling

distributions constructe(t using proportional selection, one-point crossover, and mutation are

presented in (Vose & Liepins, 1991a). Recently, Vose independently recognized that the inter-

pretation of tile population transition ol)erators as sampling distributions is a unifying theme

that nicely connects his finite an(l infinite population models of genetic algorithms (Vose,

1993b).

This section applies the formalism and insights of the theory of global random search

methods in Section 3 to genetic algorithms. First, the genetic algorithm is reformulated and

generalized in terms of phenotypic search. Genetic algorithm behavior is then described in

terms of three heuristics related to the procedural elements of genetic algorithms. Finally,

the suitability of sampling distribution theory for descrii)ing genetic algorithm behavior is

considered in the context of tile criteria established in Section 2.

4.1 Reformulating the Genetic Algorithm

The canonical genetic algorithm searches the (iiscrete si)ace of attainable strings `4, where

a single string is (lenoted A or A,. In Procedure 4, the canonical genetic algorithm is

expressed in the form of the methods of gcneration._ in Subsection 3.3.1. It is assumed that

if the objective fimction, ] : .4 --_ _t, is evaluated with noise at iteration k, then the result

is a nonnegative ran(lore varial)ie :0_:(A) = f(A) + _k(A), where _k(A) is a ran(tom variable.

Procedure 4 The canonical genetic algorithm as a generational global random search method.
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1. Choosea distribution P1 on A and set k = 1.

2. Sample Nk times P_ to obtain tile strings .4_k) a(k)

3. Evaluate tile ran(lore variai)les [Ik(A_ k)) at tile strings A_ k), where "_jk(A) = _(A) +

_k(A) > 0 with probability one, fk is an auxiliary nonnegative fimction constructed

using the observed values of f at tile strings A_ i) for j = 1,...,Ni, i = 1,..., k, and

]" A --+ _1 is the fitness or objective fimction. If

Ni

(A?)=0,
j----1

repeat the sampling by returning to Step 2.

4. Construct the next distribution according to

N_ N_

Pk+I(A,) = Z Z I'_':)P__)O'k f j(t,) a(k, A,) (23)\._y , .-_j,,, ,
j'=l jt'=l

where

p_k) = Nk

i=t

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k + 1 for k and go

to Step 2.

The construction of the saml)ling (tistrilmtions {Pk+x} in (23) is consistent with Lemma

1 in (Vose & Liel)ins, 1991_) and it l)roceeds in two stages: a global phase and a local phase.

Tim realizations Aj, and Aj,, are obtained using glol)al information about f contained in

the population an(! (24). The local l)hase correspon(ls to recoml)ination, which encompasses

both crossover an(l mutation, and is performed with the transition l)rol)ability Qk (Ay, Af,, .).

The emphasis on the use of two samples fi)r the constrm:tion of tile transition probability

distribution is tile distinguishing characteristic of genetic algorithms fi'om other global ran-

dom search rnetho(is, including evolutionary programming (Fogel & Atmar, 1990; Biick &
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Schwefel,1993) and evolutionary strategies(B,ick & Schwefel,1993; B_ick,Hoffmeister &

Schwefel,1991). It is on tile basisof thesetwo samplesand a similarity measurethat tile

locality of Qk(Af, Aj,,, .) is typically determined. This is discusse(t further in Subsection 4.2.

The distribution Pk+l in (23) is sampled using superposition: first tile discrete distribu-

tion

{ A{k), j(k) }

• . . , -_XN_

ek = (25)
p_k), . (k), PN_

is sampled twice, then the (tistril)ution Qk (A_), .4_ ), .) is sampled for each pair of realiza-

tions A_.,k) and a(k),_,j,,. The transition probat)ility ,5 : A(k) _(k) A) describe_ the probability_,dkk.,'-lj, , .,'afll ,

a(k) a(k)
of obtaining the realization A given the pair ._j, and ._j,,. The distribution Pk+l in (23)

may also be sampled using a variance reduction technique (for example_, see (Baker, 1987;

Baker, 1989; Zhigljavsky, 1991)). Finally, the distributions {Pk+_} in (23) may alternatively

be constructed to generate a pair of samples (Peck, 1993),

PI,+I(A,,,A,,,) = _ _ (,k)._(_);, (a(k) a(k) (26)
j'=l j"=l

where the transition l)rol)al)ility (_k (A_,k) _t(k) .4e,..j,, , A_,) (lescribes the probability of realizing

the pair (Ai,,Ae,) given the pair (a(_) A_ ))\,_j, ,

Tile auxiliary fimctions ]_: in Step 3 should reflect the properties of f. That is, they

should be greater when f is greater an(t smaller when f is smaller. Common choices of

fk include fimctions for fitness scaling and ranking. These flmctions may, in general, be

constructed using any subset of the previous samples. Generational genetic algorithms,

however, typically only use Aik-1),..., A_-11 ).

The genetic algorithm may also 1)e described in terms of the l)henosp_e or feasible space

X. In genetic algorithms, e,mh string or element A of ,4 is an enco(iing of a candidate

solution x, which is an element of the feasii)le space X. Due to the mapping M : ,4 --¢ X,

tile sampling (tistrilmtion (_k(Ay, .4j,,, .) on .4 constructed by selection and recombination

also imposes a sampling (listrilmtion Qt,(z _, z", .) on X. In other words, the realization x

obtained from Q_:(.A/I(Aj,),.M(Aj,,),.) is identical to .Ad(Ai), where Ai is the realization

23



obtained from (0k(Aj,, .4i, , .). The genetic algorithm can then be generalized to search the

phenospace, where the sampling (listrii)utions {P_+t} are constructed with respect to A"

according to

z", (271

where Rk is a probability measure on X and Qj,(z', z", .) is a transition probability such that

it is a measurable fimction with respect to the first two arguments an¢t a probability measure

with respect to the third. The distributions {Pk+l } are typically sampled using superposition:

first realizations z' and z" are obtained by sampling R_, then Qk(z', za', .) is sampled to obtain

x. Finally, the distributions {Pk+l} in (27) may alternatively be constructed to generate a

pair of samples (Peck, 1993).

In analogy to (26), the distril)utions {PJ,+I} may alternatively be constructed according

to

-- /,_ f,, ." dx',dx"), (28)Pk+l(d.'t',dx") . Rj,(dz')R,:(dz")Qj,(z',.. ,

where, once again, Rj, is a prol)al)ility measure on X and Qj,(U, z", dx _, dx") is a transition

probability such that it is a measm'al)le fimction with respect to the first two arguments and

a probability memsure with respect to the last two arguments. For the purposes of analysis

and discussion only (27) will I)e considered filrther.

To generate distril)utions consistent with (27), the genetic algorithm may be generalized

in the following form, where/3 is the a-algebra of the Borel subsets of X:

Procedure 5 The generalize(! genetic algorithm as a generational global rasl(tom search

method.

1. Choose a distrilmtion P1 on (X, B) and set k = 1.

2. Sample Nk times Pk to obtain the points ._:Ik) ""g')
, • . . , .4,j'V_.

3. Eva|uate the r,tn(h)m vari,_.bIes !yA:(:v)k)) at the points x_ t:), where yk(.v,) k)) = .fk(x_ k)) +

_k.(X_k)) > 0 with l)r()bability one, fk is an auxiliary mmnegative fimction constructed

24



using tile observe(I values of f at tile points :z:_i) for j = 1,..., Ni, i = 1,..., k, and

f • X --+ _l is the fitness or objective flmction. If

Nk

E _-0,
j=l

repeat tile sampling by returning to Step 2.

4. Construct tim next (tistribution according to

N_ Nk

(k) (k),_ _x(k) _.(k) xi),Pk+t(:r.,) = _ __,pj, Pj,,_k_.j,,._f,,
j_=l 3"=.1

(29)

where

Z •
i=l

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k 4- 1 for k and go

to Step 2.

4.2 Genetic Algorithm Behavior

The construction and evohttion of the distributions {Pk+l } provide considerable insights into

the interplay of the proce(htral elements. This level of abstraction lies between those of the

procedure an(i tile populational transition operators of Markov chain analysis. Furthermore,

it is usefld for un(lerstanding how genetic algorithms search tile feasible space and how they

generate increasingly better candi(tate solutions. [t is also suitable for rigorous mathematical

analysis and derivation of convergence properties.

Genetic algorithms can I)e described on the basis of the three following heuristics, which

are related to tim l)rocedural elements of genetic algorithms:

i. the number of times a previous saml)le is chosen for constructing a transition

probability, Qk, is (let)en(lent on tile flmction evahtation observe(I at that point,
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ii. the similaT"itie.s I_etween previous samples shoul(l i)e exploited in tile construction

of ttle transition prol)al)ilities, and

iii. often enough, the ol)jective or fitness flmction i)ehaves similarly on .similar sam-

pies.

The description of genetic algorithm llehavior begins with a randomly generated set of sam-

ples from ttle search space (the initial population). For each sample, tile objective fimction

value is evaluated. Then pairs of high 1)erformance samples are competitively selected from

the set of samples. For each pair of samples, another one or two new samples are randomly

generated that are .similar to tile high l)erformance Saml)les. Since it is assumed that the

objective fimction behaves similat'ly on similar samples, the new samI)les are also likely to

be of high performance. The search process continues with the evaluation of tile objective

fimction at the new samples. Sin(:e tile new samples also compete against each other in the

selection process, the set of samples 1)ecomes increasingly concentrated in tile high perfor-

mance regions of the search space. As tile saml)les become increasingly concentrated, they

become more .similar an(l tile l)t'eadth of search dynamically (lecreases. Therefore, unlike

most other global random search utetho(is, genetic algorithms (to not require predetermined

schedules for controlling tile construction of its sampling distributions.

The word ,similar is critical in the al)ove (lescription. However, there is no similarity

criterion that applies to all i)roi)iem domains and search spaces. While not yet properly

investigated for this purpose, tile f/tu_,.s,s correlation co+;]ficit'nt of an operator may serve ms

a usefill measure of similarity (Man(lerick, (le Weger _ $piessens, 1991). The similarities

exploited by an algorithm may he either genotyl)ic or phenotypic, depending on the na-

ture of tile implementation. In the ('anonical getmtic algorithm, it is tile similarities in the

candidate solution enco(lings that are exl)loite(l. Each of the traditional crossover opera-

tors (i.e., one-point, multi-l)oint, unifi)rm, and parameterized uniform crossover) preserves

the portions or bits of the en('o(iings common to i)oth par'ent.s in tile children. Searching

is performed by exchanging or randomizing tile remaining lilts in some manner. Since tile
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likelihood of altering bits of tile candidatesolutionencodingthrough tile processof mutation

typically decreases exponentially with tile numl)er of alter_t bits, mutation also results in

encodings that are similar to the original encoding. Interestingly, it is in this manner that

the string similarities common to high performance samples pervade later populations. A

more extensive explanation for observations of schema growth that does not appeal to the

schema theory is presented in (Peck, 1993, _5.4).

In addition to considering the satisfaction of tile secon(l heuristic, we will now consider

the other heuristics ;a,s well. In genetic algorithms, the first heuristic is satisfied by the global

sampling phase, which is (lescl'il)ed I)y (24). The third heuristic is problem dependent. As

addressed in Subsection 5.1, it is also (tel)en(tent on the candidate solution representation.

Furthermore, it has l)een pointed out that tile genetic algorithm will degenerate into a

random search if this hem'istic is not satisfied (Rawlins, 1991).

4.3 The Sufficiency of the Theory

The mathematical description of tile theory presented in this section is an exact represen-

tation of genetic algol'ithms based on the i)roce(hu'al elements. Thus, any phenomena of

genetic algorithms will l)e exI)lainal)le in its context. The explanatory _md predictive capa-

bilities of the theory are drawn upon throughout the remainder of this paper. The theory

is also robust with t'espect to algorithmic variations. Procedure 5, for example, allows for

fitness scaling, ranking, non-traditional i'ecoml)ination opet'ators, independence of the encod-

ing method, and arbitrary search spaces. Consequently, this theory is sufficient according to

the criteria established at the beginning of Section 2.

Since both this theory and the theory l)l'esented in (Vase & Liepins, 1991a; Nix & Vase,

1992; Vase, 1993a) are exact, they al'e isomol'l)hic. Since they have different theoretical bases

and levels of abstraction, however, these two analytical l)erspectives should be complemen-

tary. These theories are distinguished fl'om each othel" in two ways. The first is a change of

emphasis or interpretation. In (Vase _%Liepins, 1991a; Nix & Vase, 1992; Vase, 1993a), the
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interpretation of the mathematicsis lumped into a transition betw_n populations. In the

present theory, the emphasisis on how the componentsof the sampling distribution affect

the search. The seconddistinguishing characteristic is the considerationof the phenotypic

sampling distribution, if po_qible.

5 Factors Affecting the Sampling Distributions

Based on the conch|sions of Section 4.2, understan(ting the factors affecting the sampling

distributions {Pk+t} is particularly important for understanding, applying, and designing

genetic algorithms. In pursuit of this understanding, this section addresses the issues associ-

ated with the encoding of candidate solutions, the construction of the sampling distributions

Rk (i.e., selection), tile construction of tile distributions Qk (i.e., recombination), and pop-

ulation management.

5.1 Candidate Solution Encoding

Genetic algorithms work by exploiting similaritie.s l)etween previous samples and they de-

pend on the objective fimction behaving similarly on .similar samples. A crucial design issue,

therefore, is the choice of similarities to exploit. Ideally, these similarities should be chosen

with respect to the nature of the candidate solutions and the problem under consideration.

Typically, genetic algorithms encode candidate solutions and then exploit the similari-

ties in the encodings. As a consequence, the choice of can(tidate solution encoding has a

tremendous impact on the performance of genetic algorithms. According to the choice of

encoding, a problem may be reduced to the archtyl)ically easy "counting l's" problem (Vose

& Liepins, 1991b), or genetic search may t)e rendere([ rio more effective than a pure random

search (P_lwlins, 1991).

For greatest benefit, the encoding method should 1)e matche([ to the candidate soh|tions

and the problem under consideration such that similar strings will result in similar candidate

solutions. Unfortunately, it is not generally I)ossil)le to preserve similarities in both .A and
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Figure 1" The relationship between the similarities of enco(tings and the similarities of the

numbers they represent: left) wlmn natural code is used, fight) when gray code is used.

X. Typically, genetic algorithm l)ractitioners siml)ly rely upon the fortuitous existence of

exploitable similaritie.s. Since the use of binary encodings increases the rmmber of oppor-

tunities for exploitable similarities, it is not surprising that such encodings are the most

commonly used.

To illustrate the prol)lems of c.hoosing an encoding, tile specific I)roblem of encoding an

integer is considered in (Peck, 1993). Both natural code and tile gray code used in Genesis

Version 5.0 (Grefenstette, 1990) are analyzed. Ten tilt enco(tings were used to represent

integers in the range [0,1023]. In this analysis, tile Hamming (listance and the absolute

difference are used as similarity measures for the enco(lings and integer values, rmpectively.

As shown in Figure 1, two sin,ilar enco(tings will not nece_ssarily result in similar integers

for either encoding metho(l. In fact, no integer encoding longer than two bits can satisfy

this objective. This is because an integer is adjacent to only two other integers, yet an

integer encoded with g lilts, is a Hamming distance of one from exactly e other encodings.

Figure 1 also suggests why genetic algorithms using these enco(iings are usually effective.

The regio, between the 25th and 75th percentiles in each case shows that, in most instances,

increasingly similar encodings result in increasingly similar integers.

The above discussion illustrates that it is very difficult to design an approl)riate candidate

solution encoding scheme, even when the candidate solution is ,as simple as an integer. It is
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also very (lifficult to envision tile (listril)ution of candidate solutions across ..4. This difficulty,

combined with trying to understand how .A is being sampled by selection and recombination,

makes it very difficult to understand genetic algorithm l)ehavior in either the genospace or

the domain of tile prol)lem I)eing considered.

Tile many problems associated with encoding tile candidate solutions and designing the

sampling distributions to exploit string encoding similarities may very easily be eliminated by

simply designing the saml)ling (tistrilmtions to exploit similarities in tile candidate solutions

themselves. There is no theoretical requirement for the use of string encodings anti there are

many advantages to their elimination:

1. Tile problem specific structure of X is typically ranch better understood than the

distritmtion of candidate solutions acl'oss ,4.

2. Tile recoml)ination operators, Qk, lilay 1)e customized to exploit knowledge of tile

structnre anti similarities of tile can(lidate solutions that are pel'tinent to tile problem

under consideration.

3. The behavior of the genetic algorithm will be better understood since tile relationship

of the sampling (list|'ii)utions to the strncture of X will be better understood.

4. Only tile recombination operators are prol)lem dependent, ttle remainder of the algo-

rithm (Procedure 5) is unchanged.

5. Mathematical analysis is easier due to tile elimination of tile mapping .h,4.

Finally, it should l)e note(l that designing genetic algorithms to search the phenospace, X, as

opposed to tile genosl)ace, .A, is already a common practice (e.g., consi(ter order dependent

proi)lems).

Raxtcliffe ha._ also considered many of these ideas (Ra(Iclifl'e, 1991b; Radcliffe, 1991a;

Radcliffe, 1993). Referring to sul)sets ()f the search space as equivalence classes or formae,

Radcliffe argues:
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The critical tasksare thusfinding form_mwhichcharacterisesolutionsin meaning-

fill waysand (ievelopingoperatorswhich usefillly manipulate theseformae (Rad-

cliffe, 1991b).

These formae are generalizationsof schematathat are not nece_ssarilydefinedwith respect

to string similarities. By consideringrecoml)inationoperatorsthat char,_terize solutions

in meaningful ways and (lo not necessarily exploit string similarities, the need for string

encodings is effectively eliminated.

5.2 The Rk Class of Distributions: Selection

The distributions Rk in (27) make use of global infi)rmation ot)tained about the objective

function f. Furthermore, these distril)||tions are largely responsit)le for concentrating search

in high performance regions of tile search space. Since tile realizations obtained by sampling

the distributions Rk are previously obtained samt)le_s of X, these distributions do not generate

new candidate solutions or expand tile search domain.

To a great degree, tile way of constructing the distrilmtions Rk establishe_ the general

structure and originality of a global random search method (Zhigljavsky, 1991). In the

canonical genetic algorithm, prol)ortional selection is use(I, as in (1). In practice, auxiliary

flmctions fk related to the ol)jective flmction f are typically constructed for the purposes

of fitness scaling or ranking. Tile distrit)utions Rk are then implemented according to (30).

Many other methotts may t)e used instead of proportional selection (Goldberg & Deb, 1991;

B/_ck & Hoffmeister, 1991; tie la Maza ¢%Tidor, 1993), including the methods use(l in evolu-

tion strategies (Biick & Schwefel, 1993; Biick, Hoffmeister _ Schwefel, 1991) and evolutionary

programming (Fogel & Atmar, 1990; B_ick & Schwefel, 1993).

Proportional selection is very simple, is suitable for use in the i)resence of noise, and it

ha.s nice theoretical l)rol)erties. Theol'em 3 indicates that the the best string in the initial

population eventually (iominates the t)olmlation (Peck, 1993; Peck & Dhawan, 1993). This

theorem simulates tile effects of an arbitrarily large pOl)ulation by allowing fractional mlmbers
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of individuals. Comparing (31) to (22) provides additional insights into genetic algorithm

behavior. These equations are consistent with Equations (7) and (8) of (Goldberg & Deb,

1991).

Theorem 3 The observed average population fitness, f(A(t)), at time t, and the number of

instances of a particular string A_ at time t, m(Ai, t), resulting from the use of proportional

selection may be expressed:

and

m(A,, O)ff+_(A,)

A,e.a (31)
f(A(t)) = _ m(Aj,0)f'(Aj) '

AjEA

m(A,,t) = Nm(A,,O)ft(A,) (32)
-,(Aj,0)I'(AA'

AjEA

where N denotes the ,size of the population, and m(Aj, 0) = 0 if Aj _ A(0).

Proof: The following inductive proof begins with the initial steps. By definition,

m(Ai, 0) =

and

Nm(Ai, O)fO(Ai)

rn.(Aj, 0)f°(A,) '
AjEA

1

f(A(0)) = -_ _ m(A,,O)f(A,),
AiEM

-,(A,, 0)It(A,)
AiEA

,,,(.%, 0)I°(AA
AiEA

since Vt >_ O, N - _,a,_.a m(Ai, t.). Furthermore,

m(.4_, 1) =
.,( A,,o)f (Ad

f(A(0)) '

m(Ai, 0) f' (Ai)

l _ rn(Aj 0)fl(Aj) 'N

AjE.A

Nru (Ai, 0) f l(Ai )

Z "'(AJ,O)I'(AA'
mj EA

and

(33)

(34)

(35)

(36)

(37)

(38)

32



and

Then

and

f(A(1))

Let us now assume that

m(A_, k) =

f(A(k)) =

1

_ _ m(Ai, 1)f(A,),
AIEA

Nm( A,, O) f (Ai)f ( A,)
1 A,_A

N _ m(Aj,O)fl(Aj)
AiEA

.,(A,, O)f(A,)
AIEA

m(Aj, O)fl(Aj)"
AjE.,4

Nm(A,,O)fk(A,)

m(.4j, 0)fk(Aj)
Aj E..,4

m(Ai,O)fk+l(Ai)
AiEM

.,.(Aj, 0)f_(.%)
AjE.,4

(39)

(40)

(41)

(42)

(43)

m(Ai, k + 1)
m(A_, k)f(A,)

/(h(_:) '
1

= m(A_,k)f(Ai)f(A(k)'

Nm(A_, O)fk(A,)f(A,)
m(Aj, O)fk(Aj)

Aj E.A

m(Aj, 0)f':(Aj) _ m(Ae,O)fk+t(Ae) '
Aj EA Ail EA

Nm(Ai, 0)fA:+l(Ai)

m(Aj,O)fk+'(Aj) '
Aj Eft.

(44)

(45)

(46)

(47)

1

f(A(k + 1)) = _ _ m(A,,k + 1)f(A,), (48)
AiEA

Nm(A_, O)fk*l(A,) f(A,)
1 AiEA

!

N _ m(Aj,O)f':+'(Aj) '
AjEA

m(.4,, O)f':+"(Ai)

m,(Aj, 0) f,:+l (A j)"

(49)

(50)

Since it has been shown 0rot the theorem is satisfied fi)r t = 0, 1 and that if the theorem
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Figure 2: Ideal string and t)opulation fitness growth curves, based on a clumped initial

population: left) The growth of instances of the strings having the indicated fitne_ss, right)

The growth of the observed average l)opulation fitness.

is satisfied at t = k then it is also satisfied at t = k + 1, the process of induction completes

the proof. •

In (Syswerda, 1991), the effects of proportional selection on the growth of strings are

investigated. Three cases are considere(t: the ideal (infinite population) case, the finite

population case using the standar(t 'roulette wheel' l)roportional selection method, and the

finite population case using a selection variance reduction technique, Stochastic Universal

Sampling (SUS) selection method (Baker, 1987). In all three cases, the population fitne_sses

are initially clumped at specific wdues: 10% of the population has a fitne_s of 10, 10% has a

fitness of 20, and so on, Ul) to a fitness of 100. A mmd)er of interesting observations can be

made from the presented results. Tu the ideal case, the growth curves, which were obtained

using difference equations, are indistinguishai)le fi'om those ol)tained using the equations of

Theorem 3. The growth curves derived from Theorem 3 are presented in Figure 2. When

a finite population anti standard selection are used, the growth curves are nearly ideal, but

noticeably different. When the wu'iance re(tuction technique is employed, the growth curves

are indistinguishal)le from the i(teal curves.

In (Peck, 1993), an empirical study is perfi)rmed to determine whether the discrepancy

between the ideal growth curves and the growth curves using the finite l)Ol)ulation anti stan-
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dard selection is significant. Pol)ulations of 10, 20, 40, an(t 100 strings were investigated.

Uncertainty in the results was reduced I)y _weraging the cmwes from 1000 in(lepen(Ient ex-

periments. Both stan(iar(l an(i SUS l)rOl)ortionai selection metho(ts were investigated to

determine the effects of selection noise. Figures 3 and 4 lu'esent a i)ortion of tile results.

The emt)irical l'esults indicate that l)oorer I)eri'ormance shouhl l)e expected when smaller

populations are use(|, reg;anlless of the selection metho(I. Analytical proofs or explanations of

this observation are presently unavailahle. Using standard proportional selection, extinction

of tile best individuals was ol)served for [)Ol)ulatio=_s of 10, 20, 40, and 100 individuals
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in 40%, 20%, 3%, and 0% of tile trials, resi)ectiwdy. Extinction of tile best individuals

is not possible using SUS I)l'oportional selection. Extinction, therefore, can explain some

of the poorer performance, but not all of it. The poorer i)erformance does seem to be

well correlated with the sampling variance, however. There is higher sampling variance for

the smaller populations an(t tile performance is worse for smaller populations, regardless

of the selection method. Fm'thermol'e, tile use of the variance reduction technique results

in improved performance. Unfortunately, the relationship, if any, between high sampling

variance and poorer selection pel'fol'nlance is presently [lot understood.

5.3 The Qk Class of Distributions: Recombination

The distributions Qk in (27) typically perform a localized search according to some similarity

measure, and are refex'l'ed to ;_._recombination operators in tile genetic algorithm literature.

The distributions Qk(z _, z", .) are dependent on two realizations, £ and z #, which are likely

to be of high performance since they are obtained through selection. These distributions are

typically designed to exploit similarities between these two high l)erformance realizations.

These distributions can also 1)e designed to exl)loit inferences al)out the local behavior of

tile objective fimction f l)ased on tile two salnl)les, z' and z", an(t their evaluations (Peck,

1993). TtLe (tependence of the (tistl'il)utiorls Qk(z', z", .) on two saml)les combined with the

use of selection I can eliminate the need for sche(hlling the narrowing of local search, which

is required for most adaptive glol)al I'all(lOlI! search inetho(Is (e.g., tile simulated annealing

and the metho(ls of generations (Zhigljavsky, 1991)). Since this is typically (lone in genetic

algorithms, both tile distributions Rk and the (tistril)utions Qk are typically adapted on the

basis of information ol)tained (lm'ing the search.

In Section 4, it is argued that genetic algol'itllm 1)ehavior can best be understood by

understanding the sampling (listril)utions induced on tile phenost)_w.e. Accordingly, the sam-

pling (tistril)utions ilnl)ose(I on !t_n l)v tile traditional reconll)ination operators will now be

I Re(:;fll that selection, or the sampling _)t"the distributions Rt_, (:on(:entrate.s the sampling distribution in

the high performance regions observed glol)a[ly.
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consideredwith ttle useof a novelvisualization technique.Ttle operatorsthat will bechar-

acterized are one-point crossover_rl(t uniform crossover. Other traditional recombination

operators are visualize(l in (Peck, 1993). Due to tile independenceof the encodedparame-

ters it is sufficient to consi(tertile sampling of one (limensionat a time, N1. However,due

to the dualism betweenenco(lingsan(l recombinationoperators(Battle & Vose,1991;Vose

& Liepins, 1991b),visualizationswill l)e presentedof the recombinationoperators applied

to both natural code and tile gray code usedin GenesisVersion 5.0 (Grefenstette, 1990).

Finally, msis typically the c,se, the real valueswill actually beenco(te(la.sintegersand used

asa real vahle by apl)iying an affine transformation.

The objective of this visualization techniqueis to communicatewherethe realizationsof

the recombinationoperators,Qk(z', z", .), are likely to l)e obtained relative to the location of

the parents, z _ an(l z". To fiilfill this objective, all integers are encoded using six bits, and it is

assumed that all pairs of parents are equally likely. For a particular pair of parent value_, it is

possible to compute the likelihoo(l of realizing particular values given tile recombination op-

erator and the enco(ting scheme. A suitable visualization can t)e constructed by accumulating

the marginal sampling (listributions for sets of parent vahtes separated by a given distance.

To properly accumulate these (listril)utions, they are translated by tile amount required to

position the mean of tile two parents on the center column of tile image 2. Each marginal

distribution is then use(t to construct a single row of tile visualization, where the brightest

pixel values corresl)on(t to tlle most likely realizations. Tile top row of tile resulting image

corresponds to tile marginal Saml)iing distribution of parents separated by a distance of zero

(they are the same). Successive rows corl"eSl)On(t to the marginal distributions of increas-

ingly separated parents. Finally, the bottom row corresI)onds to the marginal distribution

of parents separated l)y a distance of 63. As shown in (Peck, 1993), it is also insightfifi to

visualize the feasible realizations l)y setting all locations with a positive probability of being

_-The image requires _ minimum of 127 (:ohmms I)e(:ause when both parents are 0, the marginal sampling

distribution occupies (:olumns 63-126, and when they ;u'e both 63, the marginal sampling distribution occu-

pies columns 0-63. For all other (:ombinat, ions of parents, the marginal distributions fall into this range of

columns.
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realized to white, and all other locations to i)iack.

Figure 5 shows the sampling distribution resulting fl'om tile application of one-point

and uniform crossoverto integersencodexlwith 6-1)it natural code. Figure 6 presents tile

visualizations resulting fi'om the use of 6-bit gray code. These visualizations indicate that

the distributions generate(1 by one-point crossover are more concentrate(t in the vicinity of

the parents than those resulting from uniform crossover. Tile salient characteristic of the

sampling distributions resulting from the use of the gray code representation is that the

breadth of search decreases ,as the distance between the parents (lecre,ases.

In (Peck, 1993), one-point, tw(_-point, uniform, an(! parameterized uniform crossover

operators using both natural an(1 gray enco(|ings are _t)l)|ie(! to De Jong's test suite (De Jong,

1975), and their effectiveness is comi_are(! on tile basis of five performance me,asures. It is

found that those operators that ten(l to saml)ie most often near the parents result in superior

performance. Therefi)re, it may be conclu(le(t that concentrating and constraining search

in the vicinity of tile parents results in superior performance. This conclusion is fllrther

bolstered by the recommended settings of tile recomi)ination control parameters, such

crossover and mutation prol)abilities, which serve to fllrther localize search. Finally, this

conclusion has I)een favorai)ly exploited in the design of a family of recombination operators

for use when X C _ (Peek, 1993). An example of these operators an(! its visualization are

presented in (52) and Figure 9, respectively.

5.4 Management of the Population

The population is the I)asis for the construction of the sampling distributions. The infor-

mation ol)tained by the genetic algorithm u 1) to a certain iteration is entirely contained in

the distribution of the population's samples an(I in the evaluations of the objective flmction

obtairted at th()se samples. In fact, this irdbl'matiorl completely determines the distribtttions

Re. For this reason, it is arguable that the management of tile population should )lave been

discussed in Subsection 5.2. However, fi)r the sake of clarity, the many issues associated with
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Fignre .5: Sanlplin,: dist, rilnut, io.s ot'one-ln_i.t and unil'_)rm crossover se_u'ch in the re_,.l domain

with natnral code re.ln'es_.t, at, i_n,_: /.op) t_tte.-l_Oint. _'rossover, botl.o'm.) uniform crossover.
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Figure 6: S_mlpling dist, rilmt, ions oforle,-point _uld uniform crossover se_u'ch in the tea.1 doma, in

with gray c,ode representations: top) one.-point crossover, bottom) uniform crossover.
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the managementof tile population are(:onsideredhel'esel)arately.Tile issuesconsideredare

those associatedwith tile compositionan(t creation of tile population, ttle updating of tile

population, and the deletion of membersfi'om the population.

5.4.1 Population Issues

Of the two population issuesconsitlere(lin this subsection,population sizing and initializa-

tion, population sizing is certainly the most thoroughly investigatedin the literature. The

population providesan estimateof the objectiveflmction behavior. Obviously,a largerpopu-

lation results in a more (lensesamplingof theobjective fimction and a better estimate. If the

objective is to ensm'ewith a certain degreeof confidencethat the algorithm will adequately

searchthe objective filnction, then the complexity of the l)henospt_eand tile characteristics

of the objective fltnction shouldi)e ('.onsidere(lin the sizingof the population. If the fimction

variessignificantly in small regions,then a larger pol)l,lation will be necessaryto provide an

effectiveestimate,whereasa slowlyvarying fimction may beadequatelye.stimatedwith very

few samples. Similarly, a highly complexl)henospacewill requiremoresamples,than a very

simple one. The (h'awl)_:kto tile useof larger 1)Ol)ulationsis that tile rate of improvement

or convergenceis slowerwhenmeasuredby the mlml)er of evaluationsperformed.

The population sizingproblemhasbeenconsidere(tin the literature both empirically (DeJong,

1975;Grefenstette,1986;$chaffer,Caruana, Esheiman _ Das, 1989; .Jog, $uh _: Gucht, 1989)

and analytically (Goldberg, 19891); Reeves, 1993; Goldl)erg & Ru(tnick, 1988; Goldberg, Deb

& Clark, 1992; Gol(lt)erg, Dell & Clal'k, 1993). The eml)irical stutlie.s have suggested pop-

ulations ranging fi'om 20-200, (teI)entling on the optimality criterion. Of the analytical

approaches, information about the objet:tive flmction is considered only in (Gol(lberg &

R.udnick, 1988; Go[(tl)erg, Dell & Clark, 1992; Gol(ll)el'g, Dell & Clark, 1993), albeit in the

form of collateral noise. The favoral)le empirical l'esults obtaine(1 with these metho(ts might

be explainable in terms of the oi)jet:tive fimction, the proI)erties of the l)henospace, and the

relationship between tile schemata and the l)henosi)ace. If so, they may provide the basis for

population sizing metho(ls that are 1)ase(I mot'e (iil'e('tly on the first two properties. Such a
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method would also l)e apl)licai)lewhen1)inaryenco(lingsof the candidatesolutions are not

used.

A population managementissuethat has receivedlittle attention in tile literature is

improving population initialization. This literature is reviewedin (Peck,1993),and a novel

initialization techniquel)_ge(!on stratified sampling is proposed.This method is motivated

by the facts that reducing ran(tomnesscan increaseefficiency,and stratified sampling has

beenshownto dominate in(tel)en(tentsaml)ling (Zhigljavsky,1991,§4.4).Stratified sampling

involves (tividing the sampling region, _', into m. sul)regionsof equal volume. Then, if

N = rn._ samples are desire(l, each of the m sul)regions is randomly sampled e times, using

a uniform distribution. The effects of stratifie(t initialization on genetic algorithm behavior,

however, are negligii)le when applied to De .]ong's test suite using an initial population

of 50 samples. This suggests that genetic algorithm |)ehavior is rol)ust with respect to

slight variations of the initial population, which is (iesiral)le. Problems for which X or f

is highly complex, or only a small initial population is possihle, may 1)enefit from stratified

initialization.

5.4.2 Sequentiality and Deletion

Genetic algorithms a(lapt their sampling distributions based on information acquired during

the search. Most commonly, the sampling (listril)utions {Pk+t} are sampled N times before

they are up(late(t, where N is the size of the population. In sequeutial or steady-.state

variants, the sampling (listrii)utions are Ul)(late(l mot'e fi'equently, such ms after each sample.

This makes it possible to exl)loit information sooner after it is acquired. The portion of the

population that is rel)la(:e(t l)rior to ul)(tating the sampling distributions is descrit)e(t by the

generation gap.

Increased se(luentiality results in increa.ge(l selection noise or variance COml)ared to the

use of generation;_l repla('ement and the use of" sampling variance re(tuction techni(lue_s, such

as SUS selection (Baker, 1987). Baket"s "Sto('h;_stic Universal Sampling _' technique (Baker,

1987). Sampling variance re(iuction techni(lueS work ¿)y establishing codependencies among
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tile realizationsof Rk. The more Saml)les there are to I)e ol)taine(l from Rk, tile more effective

the sampling variance reduction technique will I)e. Selection wu'iance is increa_sed with tile

degree of sequentiality because fewer samples fi'om Rk are obtained at a time. Some of these

assertions are suI)ported in the literature. It has been concluded l)ase(t on the use of uniform

or random deletion that tim potential ,_tvantages of overlapping populations are dominated

by the negative effects of genetic drift or allele loss (De .long, 1975; De Jong & Sarma, 1993).

In (De Jong & Sarma, 1993), it is concluded that the higher variance _ssociate(l with smaller

generation gaps leads to greater variation of actual growth curve_ of individuals on a single

genetic algorithm run, an(t more genetic (h'ift or allele loss.

Aside from t|_e r_egative effects of ir_c_'eased selection zzoise, tim i_erformance of seqlmn-

tial genetic algorithms is predominately (tetermined by the deletion method. Consider the

following strategies for removing saml)les from the current population to allow for the inser-

tion of new samples. Best-in-first-out (BIFO) deletion, in which the be.st observed sample

in the population is the first removed, would clearly result in a counterproductive influence

on behavior. Conversely, worst-in-first-out (WIFO) (teletion exploits ol)servations very ag-

gressively to concentrate samples in the highest performance regions encountered. Finally,

last-in-first-out (LIFO) deletion would degenerate into a non-uniform random search with a

very weak adaptive element, whi(:h is the last sample. Only WIFO deletion is in common

use.

In (De Jong _: Sarma, 1993), the effects of the generation gap on performance are investi-

gated. It is concluded that the _;rowth curves of genetic algorithm selection are independent

of the generation gap, and there is m) compounding effect (De .long & Sarma, 1993). These

conclusions are i)ase(l on the use of uniform deletion, the COml)arison of the ideal growth

curves for generational genetic algorithms and stea(ly-state genetic algorithms with uniform

(teletion, which are presented in (Syswer(fa, I991), and on mathematic._I analysis. Uni-

form deletion, however, is not an aggressive deletion method. FHrthermore, it has been

shown that steady-state genetic algorithms with uniform (leletion are not actually identical
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of different fitnesses in the population, Tight) the average population fitness.

to generational genetic algorithms (Peck, 1993). Conversely, advantages can be accrued from

sequentiality. These advantages, illustrated 1)y the use of first-in-first-out (FIFO) deletion

applied to a sequential genetic algorithm, may I)e seen by comparing Figures 2 and 7.

Many methods for (leletion have been proposed for use in genetic algorithms (Syswerda,

1991). These methods may be distinguished by whether the (leletion strategy makes use of

observed sample evaluations. Methods that (to not use fitness evaluations, such as uniform

and FIFO deletion, are preferred when the oi)jective fimction is evaluated with noise since

they will not result in a population I)iase(t 1)y saml)les evaluated with favorable noise 3. Con-

versely, those methods that use fitness information, can have more aggressive exploitation,

but they are not suitable for use in the I)resence of noise. To avoid l)remature convergence,

however, care must l)e taken to ensure that Theorem 1 is not violated.

6 Convergence Properties

In this section, the convergence proI)elties of genetic algorithms will l)e considered. First, a

property of genetic aigorithnls that makes glol)al coavergence l)roo|_ (lilficult, if not irnpossi-

ble, will t)e discussed. Subsequently, a simplistic remedy will then 1)e provided. This remedy

3The effects of noise on genetic algorithms are carefiflly e×amined in (Peck, 1993, §7.2).
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will be accompanied1)yproofsof convergenceto global optima.

6.1 Why Genetic Algorithms may not Converge

While genetic algorithms satisfy Zhigljavsky's requirements on the global sampling compo-

nents, they do not satisfy the requirements oil the local sampling components..ks discussed

previously, tile sampling distributions of tile recombination operators are constrain_t locally

by the similaT_tie.s of the two parent sample. However, the parents are chosen by a global

sampling component. Therefore, tile two parents may not be very similar. As a result, the

recombination sampling distributions may not l)e adequately constrained or localized for

convergence.

The dependence of the local sampling distributions on two samples can have undesirable

consequences, such as convergence to sub-optima and divergent behavior. To illustrate these

effects, consider the following fimction with tile feasible space X = .T. : z E [0, 1):

= - - + (_._:. (51)

This function is illustrated in Figure 8 for w_hles of _ equal to 0.22 and 0.23, respectively.

This function has an optimunl at al)proximately 0.96 with a narrow peak and a sub-optimal

local rmmimum at approximately 0.35 with a broad peak. This function was designed such

that a recombination event between saulple.s fi'om each peak will result in a disproportionate

number of realizations in the larger, sub-optimal peak, and a recombination event between

samples from the sarne peak will likely result in realizations within the same peak.

If the breadth of tile sampling (tistrilmtions Qk is (lel)en(tent on the distance between

the parents, then it is expected that a sampling distribution tug-of-war will ensue between

the large, sub-optimal mass and the smaller, higher performance mass. Selection will always

favor the samples within the optimal peak. Thus, if recombination always resulted in a

realization occurring on the peak of the l)arent sample around which Qk is centered, then

selection would concentrate the population on the optimal peak. In this manner, samples

may be stolen IW the optimal peak fi'om the sub-optimal peak. However, samples within the
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Figure 8: An illustration of F6 in tile feasible space X = x : x E [0, 1) for a = 0.22, 0.23.

sub-optimal peak will also 1)e selected with positive prol)at)ility. Due to ttle nature of F6,

realizations of Qk centered at a sample within the optimal peak will often be obtained on

the sub-optimal peak when the other parent sample is from the sub-optimal peak. If such

a realization is then recomlfined with another sample fi'om the sub-ol)timal peak, then the

resulting sample will likely also l)e on the sub-optimal peak. In this manner, samples may be

stolen from the ol)timal peak I)y the sub-optimal peak. Loosely speaking, if the rate at which

samples are stolen from one peak to the other is exactly balanced by the other peak, then a

steady state distribution or eigen-measure will occur. This situation wouht be unstable since

a perturbation in the distril)ution will 5wor one peak or the other, which would be filrther

reinforced by selection.

To test the behavior of the genetic algorithm on this fimction, one of the three basic

recoml)ination operators prol)osed in (Peek, 1993) was used. The recombination operator is

applied to each (|imension indel)endently. The basic form of its density is

( (.,, 1 z') +q(z , z", ) =

where _(z) is an arbitrary symmetric density centered at zero, _ -" t,:lz'- z" I, and _: is

a control parameter. Densities of this form are constru(:ted directly from the candidate

solutions, are centere(t around each parent, and the searc|| ln'ea(lth is proportional to the

distance I)etween the parents. The concentration of the density around tile t)arents can be
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Figure 9: The sampling distribution of tile triangular recombination operator with a base of

width 1.0.

controlled l)y varying _:. In (Peck, 1993), _y(:t:) is set to tile Gaussian density, tile triangadar

or roof density, and tile uniform density. In this _'ase, however, _(z) = t(z), where t(z) is

the triangular density with zero mean and a base width of _ = 1.0. A realization, r, of t(:r)

may 1)e obtained fi'om a realization, _, of a uniform deviate on tile range [0, 1) according to

if _ < 0.5

/
_f ¢ > 0.5.

The visualization of tile resulting sampling distribution is provided in Figure 9.

To avoid premature convergence due to inadequate sampling and to reduce the stochastic

effects, a population of 10,000 samples was used. This population was initialized by sampling

a uniform distribution on the mlit it,terval. Figure 10 shows tile progression of sampling

distributions for r_ = 0.22 and _ = 0.23. It. was fimnd that for values of :_ < 0.22 the

sampling distributions will converge to the sub-olItinml peak. It was also found that tile

sampling distributions will converge to the Ol)timai peak when :e > 0.23. Figure 8 reveals

that a sInall perturbation of _ has a very small e.fl'ect on F6, but Figure 10 clearly indicates

that tile effect on tile sampling distribution sequence is dramatic. These results confirm
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Figure 10: Sampling distributions generated by F6: h'ft) when (_ = 0.22, convergence is to
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tile unstable, tug-of-war 1)ehavior of genetic algorithms on ttlis fimction. More importantly,

however, these results confirm that genetic algorithms can be expected to converge to sub-

optima when al)l)lie(I to certain functions, even when the sampling of the objective function

is adequate. Similar (livergent behavior of canonical genetic algorithms has been observed

on deceptive fimctions (Gohil)erg, 1987).

6.2 Critical Requirements

For Theorem 2 and its a.ssociated corollaries to be al)plicable, genetic algorithms must be

representable in a form consistent with generational nletho(ls. This can be achieved by

setting

QA:(z',_I:':) _._, "_ "'" '" "" d._:),= P_:Laz )_kL_ ,'. ,

where Pk is describe(i 1)y (17). Thus, the genetic algorithm sampling distributions {Pa+l}

may be expressed according to (16).

If assuml)tion (t)) of Section 3.3 were replaced with

p'. the transition I)robal)ilities Q_(x', x", .) are (lefined 1)y

, ,, .4) f, , :,:,,dz)+Q,I,t::: ,x , = . I[:eA,/_(x.,)<I_(:)]T_(x , ,

1A(x') /r l[_"(:)<n(=')]T* (x', x", dz), (53)
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where T_ (x', x", dz) are transition l)robabilities,

it would only be necessary to prove that the transition proi)al)ilities, Tk(x _, x", dz), weakly

converge to c_, (dz) for k --_ c¢ and fi)r all x' E X to satisfy the requirements of Corollary 3.

To prove this, however, would require additional assumptions on the objective fimction f.

To meet tile requirements of Corollary 4, satisfaction of tile following assumption would

be sufficient.

r_. the transition probal)ilities Q_:(x', x", dz) are (tefined by

Qk(:,:',:.",d:) = <:_(:,:')_((:. - ._:')l& ) #,,(dz), (54)

where _ is a continuous symmetrical finite density ill ,_n,

1
fl_ > o, E ,&:< _, <:k(:,:) =

f,.: ((_ - _)/Z_)#.(dz)k=l

The novel recombination operator described 1)y (52) may l)e expressed in the form of (54)

with _k - o_]x _ - x"l- To verify the satisfaction of this assmnl)tion, it must be proved that

OO

k=l

The reason why this is not generally possible is discussed in subsection 6.1.

6.3 Ensuring Convergence to a Global Optimum

In the previous subsection, the missing links in al)plying Zhigljavsky's convergence proofs to

genetic algorithms were revealed. Ill I)oth cases, the critical requirement is proving that the

distributions Qk weakly converge sufficiently quickly to a l)rol)al)ility inemsure concentrated

at a point.

Rather than proving this prol)erty, it is possible to simply redesign tile sampling (iistri-

butions Qk to ensure this prol)erty is satisfied. Consider the following a_ssumption:

r#. the transition l)robabilities Q_.(:l:', x", dz) are (leline(l I)y

Q_:(:,:',:.",(_:)= .,:(:,:'): ((:. - :.')/:_ )/,,,(d:), (55)
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where¢pis a continuoussymmetricalfinite density in _",

and

X ! # :l_tt_

- :. I,f]k -- " r tt

1
= :

((z- /,.(d:)

(56)

oo

")'k > O, _ "Yk < oo.
k----1

Selecting/3k as in (56) allows the continued exploitation of similarities for atlaptation and

improved efficiency, and it fi)rces the reduction of local search breadth at a sufficient rate to

prevent diffusion of the sampling distrilmtion away from global optima. To allow for nearly

normal genetic algorithm perfi)rmance, a conservative 7J, sche(iule, which satisfie_s (r"), could

be used.

Using the assumptions in AI)pen(lix B, the assumption that the feasible space, X, is a

compact metric space of arbitrary type, an(l assmnptions (I)_) and (r") above permit tile

following corollaries.

Corollary 6 Let the conditions (c), (d), (e), (It), (i), (j), (o), (q), (t), and (p') be ,satisfied.

FurtheTvnore, let h'") be sati.sfied f(rt" the transition probabilities Tk(x', x", dz) of (53). Then

the sequence of distributimLs determined by (21) weakly converges to e*(dx) for k --+ cx_.

Proof: All of tile conditions of Corollary 3 are satisfied.

Corollary 7' Let the conditions (c), (h), (i), (j), (q), (t), and (r") be satisfied. Then the

seqvence of distributions deteT"mincd by (21) weakly converges to ¢*(dx) for k --+ cx_.

Proof: All of tile conditions of Corollary 4 are satisfied. •

Corollaries 6 an(l 7 demonstrate that genetic algorithms can be constructed in a manner

to ensure convergence to a global optimum.

Interestingly, even when very small values of _ where used in (51), a genetic algorithm

using force(1 local search reduction (FLSR) al)I)lie(t to the distribution in (52) consistently
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convergedto tile global Ol)timmn. FLSR has also been apI)lie(l to other novel recomi)ination

operators and showll to be highly effective when Ol)timizing tile flmctions in De Jong's test

suite (Peck, 1993).

7 Conclusions

In this paper, tile theory of global random search methods is applied to genetic algorithms,

and genetic algorithms are generalized into a i)roader class of methods. This broaxter class

inclu(les those global random search metho(Is with probal)ility transition operators that are

dependent on two globally obtained samples.

A primary tenet of this paper is that the construction an(l evolution of tile sampling

distributions (Pk+t}, particularly in the context of the pl|enospace, is the preferred basis

for understanding genetic algorithm I)ehavior. It is the l)referre(! 1)asis because it operates

at the level of abstraction most apl)ropriate for understanding the interplay among the

search of the objective fimction, the procedural elements, and generating mechanisms of the

genetic algorithm. Accordingly, the genetic algorithm is reformulated in terms of sampling

distributions and generalized m terms of the phenosI)ace. Three heuristics to aid in the

understanding of genetic algorithm design an(i behavior are also intro(tuce(t.

The factors affecting these sampling (listrilmtions are consi(lered extensively. It is con-

cluded that: there are many a(tvantages to exploiting candidate solution similarities directly,

selection variance can l)e eXl)ecte(l to (legr_ule l)erformance, the best traditional recombina-

tion operators have localize(t searcll distributions that are in(:reasingly constrained in breadtil

,as the distance between tile parents (tecreases, genetic algorithms are robust with respect to

initial populations, and FIFO deletion is more exl)loitative than generational replacement.

Sufficient conditions flu' convergem:e to a glol)al optiutum are also estal)lished. These

con(litions ensure that the transition i)vobal)ilities, which ave otherwise constrained primarily

by the similarities of two globally obtained and t)ossil)ly (tissimilar samples, are a(lequately

localized. These sufficient conditions fi)r (:onvergence, however, are purchased at tile cost of
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one of tile most appealing characteristicsof geneticalgorithms: its totally adaptive nature.

To theoretically ensureweakconvergenceto a glol)al optimum, a sche(hdefor constraining

tile searchbrea(|th of tile reconll)inationoperator must besupplied.

There are many opportunities for fln'ther researchrelated to this paper: deriving the

relationship betweenhigh samplingvariancean(t poorerselectionperformance,reducing se-

lection sampling variancein sequentialor steady-statemethods, reexaminingthe population

sizing problem to maketile (tel)endencieson the complexity of X and f explicit, weakening

the sufficient con(litions for the weak convergence of genetic algorithms to a global optimum,

and developing a fidly adaptive metho(t that is proval)ly convergent, but does not depend

on scheduled control of tile transition I)rol)alfilities.

A Weak Convergence

In this apl)en(tix, weak convergence is defined. The presentation is a(lapted from (Billingsley,

1971).

Let X be a separable and complete metric sp_w.e. Denote the interior, closure, and

boundary of a set S _s S °, S-, an(l OS, respectively, where OS is S- - S °. Denote the class

of bounded, continuous real-valued filnc.tions on X as C(X). Let the a-algebra generated by

the open sets in X l)e denoted /3, and note that all fimctions in C(X) are measurable with

respect to/3.

Weak convergence is concerned with the nonnegative, completely _lditive set fimctions

P on /3 for which P(X) = 1 (i.e., proi)ability measltre_u). A set S whose boundary satisfies

P(OS) = 0 is referre(t to as a P-continuity set. If P_: and P are probability measures on

(X,/3), then Pk converges weakly to P, denoted Pk =* P, if

litIi f, f dP_: = f f tlP
k --_ oo "

(57)

for all hmctions f in C(X) (Billingsley, 1971). The convergence of integrals of hmctions forms

the basis of this (iefilfition of weak ¢:onvel'gence. Weak _:onvergence may also be characterized

in terms of tile convergem:e of the mea.slu'es of sets.
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Theorem 4 The.se conditions are equwalcnt:

a. Pk =*" P,

b. limsupk Pk(F) < P(F) for all closed F,

c. liminfk Pk(G) > P(G) for all open G,

d. limk P_(S) = P(S) for all P-co,ttinuity sets S.

Proof. A proof is i)rovide(l in (Biilingsley, 1971, Thin. 2.1).

B Assumptions

The following list coral)rises tile assumptions use(i in this lml)er. These assumptions and tile

following commentalT are a(tapted fi'om (Zhigljavsky, 1991, §5.2.1).

a. _,(x) for any x e X and k = 1,2,... are random variables having a zero-

mean distribution Fk(x,d_) concentrated on a finite interval [-d,d]; atKt the

ran(tom variables _k_ (xt), _k._(x:_),... are mutually in(lependent for any kt, k2,.. •

and xt, x_,.., from X;

b. yj,(x) = fk(x) + _k(:z:) > ct > 0 with i)roi)ability one for all x E X, k = 1, 2,...;

c. 0 < ct < fk(x) < Mt: = supft:(x) < C < _ fi)r all x e X, k = 1,2,...;

d. the sequence of functions f_:(:t:) converges to f(:,:) for k -_ c¢ uniformly in x;

e. Qj,(z, dx) = qk(z,:_:)ll.(dz),

sup qk(z, z) < Lk <
z,:r.E,V

for all k = 1, 2,... where IL is a l)rolml)ility me_sm'e on (X, B);

53



f. the random elements X1,---, X;v with a distribution R(dxl,..., dXN) defined on

_N --" 0"(,_ X ... X ,_) are symmetrically del)endent 4. That is, for any choice of

distinct positive integers il,..., iN, tile joint distribution of

Xii , • • • , XiN

depends only oil N and is independent of tile integers it,..., IN (Bh,m, Chernoff,

Rosenblatt & Teicher, 1959);

g. the probability distribution PM(dXl,..., dxM) on lJ M is described in terms of the

distribution R_c(dxl,..., dxy ) through

M N

/z l'I(d(_N) 1"I ff2(_)N) Z A(z,,_i, dxj), (58)PM(dxl, .
• N j:l i:t

where

eN = {:_,...,=_,_,,.--,_'},

Z = x × [-d, d],

l'I(deN) = R_(dz_,...,dzy)F(z_,d_)...F(zN,_;v),

1
'I'(ON) = ,v

_"_ (f(zj) + _j)
j=l

A(z,_,d.',:) = (f(z) + _)Q(z, dx);

h. tile glol)td maximizer :c* of f is unique, and there exists e > 0 such that f is

continuous in the set B(x*, c) = B(c);

i. # is a probal)ility measure on (X, t3) such that #(B(e)) > 0 for any _ > 0;

j. tt,ere exists so > 0 such that the sets A(E) = {:,: E X • f(x*) - f(x) < e} are

connected for any e, 0 < _ _< e0;

4Symmetrically dependent r;ugh)ln v;,u'iables are also called interchangeable (Blum, Chernoff, Rosenblatt
&; Teicher, 1959) and exchangeable (L(_ve, 1963).
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k. tile sequence of l)robability measures Qk(x, dz) weakly converges to ¢,(dx), for

any x E X ms k --_ oo, where ¢,.(dx) is tile l)robai)ility measure concentrated at

the point x;

1. tile sequence of probal)ility measures R(k, Nk, x; dz) weakly converges to ¢z(dx),

for any x E Z as k _ _;

m. for any e > 0 there are _ > 0 and a natural ko such that Pk(B(e)) >_ _ for all

k >_ ko;

n. for any ¢ > 0 there are 5 > 0 and a natm'al ko such that P(k, Nk_1;B(e)) >_

for all k > ko;

o. the flmctions ft:, h)r k = 1, 2,... are evaluated without ran(lore noise;

p. the transition proi)ai)ilities Qk(x, .) are (lefined by

Qk(x, A)= :v l['ex':_(_)<-:k(:)]T_'(x'dz) + ln(x) :,,.l[M..)</,(,)ln(x, dz),
(59)

where T_:(.% dz) are transition prol)abilities, weakly converging to ¢_(dz) for k -_

and for all :,: E X;

q. P_(B(x,s)) > 0 for all ¢ > 0, x E X;

r. the transition prol)abilities Qk(x, dz) are (lefine(I by

d:) = ((: - #,,(d:), (60)

where _ is a (:ontinuous symmetrical finite density in !}_n,

oo I

.I._((z,., - :,:)//_)/,,,(d_)

s. fk(x)- f(x), _:(:,:)- _(:,:), Q_:(x,d:)- Q(:t:,dz)tb,' each k- 1,2,...; and

t. fk(x)= f(x)for k = 1,2,...

55



A few of Zhigljavsky's comments regarding these a.ssumptions will now be related.

Condition (a) makes two basi(: requirements tm the ewduation noise: it must be inde-

pendent, and it must be concentrated on a finite interwd. The requirement of finiteness is

particularly important. If the ewduation noise at a suboptimal point is positive and very

large, then all subsequent ewduations will occur in its vicinity with large probability. This

holds even if tile search was already concentrated at the global maximizer.

The requirement of condition (b) may be easily satisfied by constructing an auxiliary func-

tion fk(x) from fk(x) such that (b) is satisfied. If an ak is known such that P{sup I k(x)l <

at+} is equal or ahnost equal to one, then a function ]k(x) based on fk(x) that can be made

arbitrarily close to max{el, fj,(x) + constant} is 1,resentetl in (Zhigljavsky, 1991).

The conditions (h), (i), and (j) are natm'al and non-restrictive (Zhigljavsky, 1991). The

uniqueness requirement of the global maximizer :l:* is imposed to simplify some formulations.

Zhigljavsky notes that the results pre.sented actually deal with distribution convergence to

a distribution concentrated on the set

_] A(¢) D {argmax f(x)} (61)
,_>II

instead of convergence to e+..(dx). Therefore, the uniqueness requirement can be relaxed,

and convergence can be understood in this sense. Condition (j), when iml)ose(t, does require

that the set (61) be connecte(I.

Necessary requirements on the parameters of Proc+e(lure 3 are formulated in con(litions (e),

(k), and (1). Distriimtions saris[ring these requirements, however, are very easily constructed.

The assuml)tions forttmlate(l in (f), (g), and (s) are not requirements. They are only

auxiliary tools for formulating Lemma 1. In this formulation, ON is an N-fohl sampling of

X and the noise l)rocess (i.e., O_¢ E Z_r). Ttle l)rol)ai)ility of sampling a subregion of Z N

is described by the (tistriimtion ]'[(dON). Tile sampling (tistributiori for a particular dx is

(tescril)e(l l)y

N N f(z_) + _, Q(z,, dx),
• ,=,5-:+ = Z,=, +
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which is analogousto (16) in Procedure3.

Assumptions (m) an(t (n) may I)e regardedas con(titions imposedon tile parametersof

Procedure3. Sincetheseconditionsarenot constructive,easilyverifiablecon(titionssufficient

for the validity of (m) or (n) areof interest (Zhigljavsky, 1991).The conditions (p), (q), and

(r) representsuchsufficient conditions for two widely usedforms of transition probabilities.

A realization yj, fi'om (59) may 1)e obtaine(t by sampling the distribution Tk(x, .) to get (k

and setting

{ (a if fk((_:) > fk(x)Yk = Z otherwise.

This form of transition prol)ability is suitable only when the fimctions fk are evah|ated with-

out noise. When noise is present, (60) is a natural way of determining transition probabilities

for X C _Rn. A random realization y_ in X fl'om the distribution Qk(x, .) in (60) may be

obtained by repeatedly semi)ling _o to ol)tain a realization (x: until .T.+ _k E X, then setting

Yk -- x + (k- When X C _R", the transition probal)ilities of Tk(x, .) of (59) may be chosen

using (60).

Zhiglj_wsky finally observes that (:on(tition (q) I)laces requirements on both X azl(l Pt.

When X C _Rn an(I X is of non-zero Lebesgue measure, then (q) means that the Pt-measure

of any non-empty I)all in R" with tile center in X is larger than zero and that X has no

appendices _.
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